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Objective

Given a k-uniform undirected hypergraph
G = (V,E), predict the new hyperedges
which are most likely to be formed.

Hyperedge Reduction

A hypergraph G = (V,E) can be represented by vertex-
edge incidence matrix H of dimension |V | × |E| whose entry
h(i, j) = 1 if vi ∈ ej and 0 otherwise. The adjacency matrix
for reduced hypergraph using clique expansion:

Ar = HWHT −D (1)
where D is a diagonal matrix of dimension |V |×|V | containing
degrees.
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Hypergraph Representation

A natural representation of hypergraphs is a k-order n-
dimensional tensor A [1], which consists of nk entries:

ai1i2...ik =
wej

1
(k−1)! if (i1, i2, . . . , ik) = {ej} ej ∈ E

0 otherwise
It should be noted that A is a “super-symmetric” tensor.The
degree of a vertex vi is given by

d(vi) =
n∑

ik=1
. . .

n∑
i3=1

n∑
i2=1

aii2i3...ik (2)

The Laplacian tensor L is defined as:
L = D −A

Spectral decomposition [2] using

Lxk−1 = λx
xTx = 1

where (λ,x) ∈ (R,Rn\{0}n) satifying above is called the
Z-eigenpair and Lxk−1 ∈ Rn, whose ith component is defined[

Lxk−1
]
i
=

n∑
ik=1

. . .
n∑

i3=1

n∑
i2=1

lii2i3...ikxi2xi3 . . . xik

Spectral Analysis

Tensor eigenvalue decomposition arises from:

minx Lxk =
n∑

ik=1
. . .

n∑
i2=1

n∑
i1=1

li1i2...ikxi1xi2 . . . xik

such that xTx = 1
The eigenvector with minimum positive λ satisfying above
equation is termed as Fiedler eigenvector and can be computed
by following optimization problem

v? = argmin
x

Lxk > 0,
s. t xTx = 1

The corresponding eigenvalue can be computed as λ? = Lvk?.
Challenges
•Eigenvectors may not be orthogonal for symmetric tensors.
•Odd order tensor have negative eigenvalues.

Example 1

Given the following hypergraph, predict new hyperedges.
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hyperedges1 hyperedges2 cost
{6, 7, 9} {1, 3, 4} 0.0028
{5, 6, 8} {2, 4, 5} 0.0139
{1, 3, 4} {6, 7, 9} 0.0142
{5, 6, 7} {1, 4, 5} 0.0152
{5, 6, 9} {3, 4, 5} 0.0152
{5, 8, 9} {1, 2, 5} 0.0195
{5, 7, 8} {2, 3, 5} 0.0195
{5, 7, 9} {1, 3, 5} 0.0205
{3, 4, 5} {5, 6, 9} 0.0365
{1, 4, 5} {3, 5, 6} 0.0379

hyperedges1 hyperedges2 cost
{6, 7, 9} {1, 3, 4} 3.3× 10−4

{2, 3, 5} {5, 8, 9} 0.0142
{1, 2, 5} {5, 7, 8} 0.0160
{1, 3, 5} {5, 7, 9} 0.0172
{1, 3, 4} {6, 7, 9} 0.0173
{3, 4, 5} {5, 6, 9} 0.0197
{2, 4, 5} {5, 6, 8} 0.0254
{4, 5, 7} {1, 5, 6} 0.0375
{4, 5, 9} {3, 5, 6} 0.0375
{1, 4, 5} {5, 6, 7} 0.0386
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Theorem: The hypergraph Laplacian cost function for
a k-uniform hypergraph can be expressed as

Lxk =
∑
ej∈E

lej(x)

lej(x) = wej

 ∑
ik∈ej

xkik − k
∏
ik∈ej

xik


= wejk

A.M
(
xkik

)
ij∈ej

− G.M
(
|xik|k

)
ij∈ej

(−1)ns


where ns = |{ij : xij < 0}|, A.M and G.M stand for the
arithmetic and geometric means, respectively.
Computations reduced from O(|V |k) to O(|E|)

Example: Consider a hypergraph G = (V,E) with V =
{1, 2, 3} and E = {{1, 2, 3}}. The laplacian corresponding to
the hyperedge is given by

lej(x) = x3
1 + x3

2 + x3
3 − 3x1x2x3

Example 2

Removed the hyperedge {7, 8, 9}
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As there are 9 nodes, one could have
(

9
3

)
= 84. Seven hyper-

edges are further removed as they already exist in the hyper-
graph, which leaves us with 84−6 = 78 potential hyperedges.

Unnormalized Normalized
{1, 3, 4} {1, 3, 4}
{7, 8, 9} {7, 8, 9}
{2, 4, 5} {5, 8, 9}
{1, 4, 5} {5, 6, 9}
{3, 4, 5} {5, 6, 8}
{5, 6, 9} {5, 7, 8}
{1, 2, 5} {5, 7, 9}
{2, 3, 5} {6, 7, 9}
{1, 3, 5} {1, 5, 6}
{5, 8, 9} {3, 5, 6}

Example 3

Consider the 4-uniform hypergraph
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Top 10 preferential hyperedges of the 205 potential hyperedges
using the unnormalized and normalized Laplacian tensor.

Unnormalized Normalized
{1, 2, 3, 9} {2, 5, 6, 9}
{1, 2, 4, 9} {1, 2, 3, 9}
{2, 3, 4, 9} {1, 2, 4, 9}
{5, 7, 8, 10} {1, 2, 5, 9}
{5, 6, 8, 10} {1, 2, 6, 9}
{1, 3, 4, 5} {5, 7, 8, 10}
{2, 3, 4, 5} {2, 3, 4, 9}
{3, 4, 5, 9} {1, 5, 6, 9}
{1, 2, 4, 5} {1, 2, 5, 6}
{1, 3, 5, 9} {2, 3, 5, 9}

Conclusions

1 The key idea of proposed algorithm is inclusion of new
hyperedges such that there is minimal perturbation in the
“smoothness” of the hypergraph, which is qauntified by
Fiedler eigenvalue.

2 Spectral analysis using tensors representation of
hypergraphs helps to draw better insights compared to
hypergraph reduction approaches.

3 The normalized Laplacian attempts to grant similar weight
to all the nodes by normalizing with the degree of the node.
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