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Objective

Given a k-uniform undirected hypergraph

= (V,E), predict the new hyperedges
which are most likely to be formed.

Hyperedge Reduction

A hypergraph G = (V,FE) can be represented by vertex-
edge incidence matrix H of dimension |V| x |E| whose entry
h(z,7) = 1 if v; € e; and 0 otherwise. The adjacency matrix
for reduced hypergraph using clique expansion:

A, =HWH' - D (1)
where D is a diagonal matrix of dimension |V'| x |V| containing
degrees.
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Hypergraph Representation

A natural representation of hypergraphs is a k-order n-
dimensional tensor A [1], which consists of n* entries:

Ui - = {wej(kll)! if (ilai% ce 7216) — {GJ} €; € E
1119... 0

0 otherwise
It should be noted that A is a “super-symmetric” tensor. The

degree of a vertex v; is given by

n n n
d(vi) = > .. D D Giigig i, (2)
i=1  dg=1iy=1

The Laplacian tensor L is defined as:

L=D—-A
Spectral decomposition |2| using
Lx"1 = \x
x'x =1

where (A, x) € (R,R™\{0}") satifying above is called the

Z-eigenpair and £x"~1 € R”, whose i component is defined
n n n

{LXk—l}i — Z "o S: S: liigig...ikxigxig e Ly
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Spectral Analysis

Tensor eigenvalue decomposition arises from:

n n n
H%(ln £X — < s J J lilig...ikxﬁxlé R xik
ir=1 io=11;=1

such that x'x =1

The eigenvector with minimum positive A satistying above
equation is termed as Fiedler eigenvector and can be computed

by following optimization problem

v, = argmin  £x" > 0,
X

I'x =1

s.t X
The corresponding eigenvalue can be computed as A\, = Lv*.
Challenges

= Figenvectors may not be orthogonal for symmetric tensors.

= Odd order tensor have negative eigenvalues.
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Example 1

Hyperedge Prediction using Tensor Eigenvalue Decomposition

Deepak Maurya, Balaraman Ravindran, Shankar Narasimhan
Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras, India

Given the following hypergraph, predict new hyperedges.

hyperedges, hyperedges, cost

hyperedges, hyperedges, cost

{6,7,9}
{5,6,8}
{1,3,4}
{5,6,7}
{5,6,9}
{5,8,9}
{5,7,8}
{5,7,9}
{3,4,5}
{1,4,5}

{1,3,4}
{2,4,5}
{6,7,9}
{1,4,5}
{3,4,5}
{1,2,5}
{2,3,5}
{1,3,5}
{5,6,9}
{3,5,6}

0.0028
0.0139
0.0142
0.0152
0.0152
0.0195
0.0195
0.0205
0.0365
0.0379

{6,7,9}
{2,3,5}
{1,2,5}
{1,3,5}
{1,3,4}
{3,4,5}
{2,4,5}
{4,5,7}
{4,5,9}
{1,4,5}

{1,3,4}
{5,8,9}
{5,7,8}
{5,7,9}
{6,7,9}
{5,6,9}
{5,6,8}
{1,5,6}
{3,5,6}
{5,6,7}

3.3 x 107*

0.0142
0.0160
0.0172
0.0173
0.0197
0.0254
0.0375
0.0375
0.0386

Unnormalized Laplacian Normalized Laplacian

Proposed Algorithm

Spectral
Analysis of
Laplacian

Represent

Construction Cost

Theorem: The hypergraph Laplacian cost function for

a k-uniform hypergraph can be expressed as

LxF =Y e, (%)

GjEE
le.(x) =we, | Y xf —k [[
€€ €€
= we,k | AM (z7) — G.M (|;,|") (—=1)™
1i€€; 1i€e;
where ng, = [{i; : x;; < 0}, AM and G.M stand for the

arithmetic and geometric means, respectively:.
Computations reduced from O(|V]*) to O(|E)|)

Example: Consider a hypergraph G = (V, F) with V =
{1,2,3} and ' = {{1,2,3}}. The laplacian corresponding to
the hyperedge is given by

_ .3 3 3
lej(X) — 5131 _|_ ZEQ _|_ CES 3:61332:63

Compute
construction
cost using

Fiedler vector

Construct
hyperedges
with min cost

Example 2

Removed the hyperedge {7, 8,9}
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As there are 9 nodes, one could have (g) = 84. Seven |

Nyper-
nyper-

edges are further removed as they already exist in the |
oraph, which leaves us with 84 —6 = 78 potential hyperec
Unnormalized Normalized

{1,3,4} {1,3,4}

{7,8,9} {7,8,9}

{2,4,5} {5,8,9}

{1,4,5} {5,6,9}

{3,4,5} {5,6,8}

{5,6,9} {5,7,8}

{1,2,5} {5,7,9}

{2,3,5} {6,7,9}

{1,3,5} {1,5,6}

{5,8,9} {3,5,6}

ges.

Example 3

Consider the 4-uniform hypergraph

Top 10 preferential hyperedges ot the 205 potential hyperedges

using the unnormalized and normalized Laplacian tensor.

Unnormalized Normalized
{1,2,3,9} {2,5,6,9}
{1,2,4,9} {1,2,3,9}
{2,3,4,9} {1,2,4,9}
{5,7,8,10} {1,2,5,9}
{5,6,8,10} {1,2,6,9}
{1,3,4,5} {5,7,8,10}
{2,3,4,5} {2,3,4,9}
{3,4,5,9} {1,5,6,9}
{1,2,4,5} {1,2,5,6}
{1,3,5,9} {2,3,5,9}

Conclusions

® The key idea of proposed algorithm is inclusion of new
hyperedges such that there is minimal perturbation in the
“smoothness” of the hypergraph, which is qauntified by
Fiedler eigenvalue.

@® Spectral analysis using tensors representation of
hypergraphs helps to draw better insights compared to
hypergraph reduction approaches.

® The normalized Laplacian attempts to grant similar weight
to all the nodes by normalizing with the degree of the node.
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