Identification of Linear Dynamic Systems Using Dynamic Iterative Principal Component Analysis

Deepak Maurya, Arun K. Tangirala and Shankar Narasimhan

Department of Chemical Engineering IIT Madras

June 08, 2016

IIT Madras

Dynamic IPCA for Identification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥ < □ > □ ≥ < □ > □ ≥

Objective

Identify the dynamic (difference equation) model from measurements of input and output using principal component analysis (PCA)

돈에 세종에

Objective

Identify the dynamic (difference equation) model from measurements of input and output using principal component analysis (PCA)

Framework / Assumptions:

Linear time-invariant (LTI) processes.

Objective

Identify the dynamic (difference equation) model from measurements of input and output using principal component analysis (PCA)

Framework / Assumptions:

- Linear time-invariant (LTI) processes.
- Input and output are both known only with errors (the EIV case).

Objective

Identify the dynamic (difference equation) model from measurements of input and output using principal component analysis (PCA)

Framework / Assumptions:

- Linear time-invariant (LTI) processes.
- Input and output are both known only with errors (the EIV case).
- Order and delay are unknown.

Objective

Identify the dynamic (difference equation) model from measurements of input and output using principal component analysis (PCA)

Framework / Assumptions:

- Linear time-invariant (LTI) processes.
- Input and output are both known only with errors (the EIV case).
- Order and delay are unknown.
- ▶ Noise covariance matrix (of the errors in input and output) is unknown.

PCA for identification: Quick review

Suppose $\mathbf{x}[k] \in \mathbb{R}^{M \times 1}$ are **instantaneously** related through d **linear** constraints

$$\mathbf{A}\mathbf{x} = 0,$$
 $\mathbf{A} \in \mathbb{R}^{d \times M}, \text{ rank}(\mathbf{A}) = d$ (1)

Then, given N noise-free observations of $\mathbf{x}[k]$ in $\mathbf{X} = {\mathbf{x}[k]}_{k=0}^{N-1} \in \mathbb{R}^{N \times M}$, the following results fall out from the SVD (PCA) of \mathbf{X} under d < M

- 1. rank(\mathbf{X}) = M d, i.e., the last d singular values, $\sigma_{M-d+1} = \cdots = \sigma_M = 0$.
- 2. The **right singular vectors** corresponding to the *d* zero singular values provide **a basis for the null space** of **X**, i.e.,

$$\bar{\mathbf{A}} \triangleq \bar{\mathbf{V}} = \begin{bmatrix} \mathbf{v}_{M-d+1} & \mathbf{v}_{M-d+2} & \cdots & \mathbf{v}_M \end{bmatrix}^T = \mathbf{T}\mathbf{A}, \qquad \det(\mathbf{T}) \neq 0$$
 (2)

PCA for identification

... contd.

Identification (regression):

Suppose $\mathbf{x} = \begin{vmatrix} \mathbf{x}_D \\ \mathbf{x}_I \end{vmatrix}$, $\mathbf{x}_D \in \mathbb{R}^{n_y \times 1}$, $\mathbf{x}_I \in \mathbb{R}^{n_u \times 1}$ and correspondingly $\mathbf{A} = \begin{bmatrix} \mathbf{A}_D & \mathbf{A}_I \end{bmatrix}$.

Then, the model

$$\mathbf{x}_D = \mathbf{B}\mathbf{x}_I, \qquad \qquad \mathbf{B} = -\mathbf{A}_D^{-1}\mathbf{A}_I \qquad (3)$$

can be exactly recovered from an identical partitioning of \mathbf{A} as

$$\mathbf{B} = -\bar{\mathbf{A}}_D^{-1}\bar{\mathbf{A}}_I \tag{4}$$

PCA for identification

... contd.

Identification (regression):

Suppose $\mathbf{x} = \begin{vmatrix} \mathbf{x}_D \\ \mathbf{x}_I \end{vmatrix}$, $\mathbf{x}_D \in \mathbb{R}^{n_y \times 1}$, $\mathbf{x}_I \in \mathbb{R}^{n_u \times 1}$ and correspondingly $\mathbf{A} = \begin{bmatrix} \mathbf{A}_D & \mathbf{A}_I \end{bmatrix}$.

Then, the model

$$\mathbf{x}_D = \mathbf{B}\mathbf{x}_I, \qquad \qquad \mathbf{B} = -\mathbf{A}_D^{-1}\mathbf{A}_I \qquad (3)$$

can be exactly recovered from an identical partitioning of \mathbf{A} as

$$\mathbf{B} = -\bar{\mathbf{A}}_D^{-1}\bar{\mathbf{A}}_I \tag{4}$$

Can we recover both d and \mathbf{B} exactly when

1. Observations are **noisy**?

PCA for identification ... contd.

Identification (regression):

Suppose
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_D \\ \mathbf{x}_I \end{bmatrix}$$
, $\mathbf{x}_D \in \mathbb{R}^{n_y \times 1}$, $\mathbf{x}_I \in \mathbb{R}^{n_u \times 1}$ and correspondingly $\mathbf{A} = \begin{bmatrix} \mathbf{A}_D & \mathbf{A}_I \end{bmatrix}$.

Then, the model

$$\mathbf{x}_D = \mathbf{B}\mathbf{x}_I, \qquad \qquad \mathbf{B} = -\mathbf{A}_D^{-1}\mathbf{A}_I \qquad (3)$$

can be exactly recovered from an identical partitioning of $\tilde{\mathbf{A}}$ as

$$\mathbf{B} = -\bar{\mathbf{A}}_D^{-1}\bar{\mathbf{A}}_I \tag{4}$$

Can we recover both d and ${\bf B}$ exactly when

1. Observations are **noisy**? NO, with vanilla PCA but YES with Iterative PCA (Narasimhan and Shah, 2008),and

PCA for identification

... contd.

Identification (regression):

Suppose $\mathbf{x} = \begin{bmatrix} \mathbf{x}_D \\ \mathbf{x}_I \end{bmatrix}$, $\mathbf{x}_D \in \mathbb{R}^{n_y \times 1}$, $\mathbf{x}_I \in \mathbb{R}^{n_u \times 1}$ and correspondingly $\mathbf{A} = \begin{bmatrix} \mathbf{A}_D & \mathbf{A}_I \end{bmatrix}$.

Then, the model

$$\mathbf{x}_D = \mathbf{B}\mathbf{x}_I, \qquad \qquad \mathbf{B} = -\mathbf{A}_D^{-1}\mathbf{A}_I \qquad (3)$$

can be exactly recovered from an identical partitioning of $\tilde{\mathbf{A}}$ as

$$\mathbf{B} = -\bar{\mathbf{A}}_D^{-1}\bar{\mathbf{A}}_I \tag{4}$$

Can we recover both d and \mathbf{B} exactly when

- 1. Observations are **noisy**? NO, with vanilla PCA but YES with Iterative PCA (Narasimhan and Shah, 2008),and
- 2. Lagged variables are related (dynamic model)? (focus of this work)

Motivating example

Consider the process excited with a (N = 1023) white PRBS input:

$$y[k] - 0.5y[k - 1] = 2u[k - 1]$$

Measurements $u[k] = u[k] + e_u[k]$ and $y[k] = y[k] + e_y[k]$ are obtained by adding noise (white) such that (i) $\sigma_{e_y}^2 \neq \sigma_{e_u}^2$ and (ii) SNR = 10.

注▶ ★ 注≯

Motivating example

Consider the process excited with a (N = 1023) white PRBS input:

$$y[k] - 0.5y[k - 1] = 2u[k - 1]$$

Measurements $u[k] = u[k] + e_u[k]$ and $y[k] = y[k] + e_y[k]$ are obtained by adding noise (white) such that (i) $\sigma_{e_y}^2 \neq \sigma_{e_u}^2$ and (ii) SNR = 10.

Assume order is known. Dynamic PCA (Ku, Storer, and Georgakis, 1995) yields:

$$\mathbf{z}[k] = \begin{bmatrix} y[k] & y[k-1] & u[k-1] \end{bmatrix}^T; \qquad \tilde{\mathbf{Z}} = \begin{bmatrix} \mathbf{z}[1] & \mathbf{z}[2] & \cdots & \mathbf{z}[N-1] \end{bmatrix}^T$$

yields $\Lambda = [8.5 \quad 3.9 \quad 0.1883];$ $\bar{\mathbf{A}} = [-0.3991 \quad 0.1904 \quad 0.8969]$

from which the model (in difference equation form) is recovered as:

$$y[k] - 0.4772y[k-1] = 2.2476u[k-1]$$
(5)

IIT Madras

御下 米油下 米油下 一油

Scaling with Σ_e

Assume Σ_e is known. $\Sigma_e = \text{diag}[0.5758 \quad 0.5758 \quad 0.0918$

Scale data with $\Sigma_e^{-1/2}$, i.e., $\mathbf{z} \to \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.

$$\tilde{\mathbf{z}}[k] = \begin{bmatrix} \tilde{y}[k] & \tilde{y}[k-1] & \tilde{u}[k-1] \end{bmatrix}^T; \quad \tilde{\mathbf{Z}} = \begin{bmatrix} \tilde{\mathbf{z}}[1] & \tilde{\mathbf{z}}[2] & \cdots & \tilde{\mathbf{z}}[N-1] \end{bmatrix}^T$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ⊙

Scaling with Σ_e

Assume Σ_e is known. $\Sigma_e = \text{diag}[0.5758 \quad 0.5758 \quad 0.0918]$

Scale data with $\Sigma_e^{-1/2}$, i.e., $\mathbf{z} \to \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}.$

$$\tilde{\mathbf{z}}[k] = \begin{bmatrix} \tilde{y}[k] & \tilde{y}[k-1] & \tilde{u}[k-1] \end{bmatrix}^T; \quad \tilde{\mathbf{Z}} = \begin{bmatrix} \tilde{\mathbf{z}}[1] & \tilde{\mathbf{z}}[2] & \cdots & \tilde{\mathbf{z}}[N-1] \end{bmatrix}^T$$

Eigenvalue, eigenvector and constraint vector from PCA of $\tilde{\mathbf{Z}}$:

 $\Lambda = [20.2 \quad 10.6 \quad 0.9611]; \qquad \tilde{\mathbf{A}} = [0.7235 \quad -0.3671 \quad -0.5846]$

The constraint matrix for the "raw" data is obtained by re-scaling $\tilde{\mathbf{A}}$

 $\bar{\mathbf{A}} = [0.0298 - 0.0151 - 0.0603]$

Scaling with Σ_e

Assume Σ_e is known. $\Sigma_e = \text{diag}[0.5758 \quad 0.5758 \quad 0.0918]$

Scale data with $\Sigma_e^{-1/2}$, i.e., $\mathbf{z} \to \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.

$$\tilde{\mathbf{z}}[k] = \begin{bmatrix} \tilde{y}[k] & \tilde{y}[k-1] & \tilde{u}[k-1] \end{bmatrix}^T; \quad \tilde{\mathbf{Z}} = \begin{bmatrix} \tilde{\mathbf{z}}[1] & \tilde{\mathbf{z}}[2] & \cdots & \tilde{\mathbf{z}}[N-1] \end{bmatrix}^T$$

Eigenvalue, eigenvector and constraint vector from PCA of $\tilde{\mathbf{Z}}$:

$$\Lambda = [20.2 \quad 10.6 \quad 0.9611]; \qquad \tilde{\mathbf{A}} = [0.7235 \quad -0.3671 \quad -0.5846]$$

The constraint matrix for the "raw" data is obtained by re-scaling $\tilde{\mathbf{A}}$

 $\bar{\mathbf{A}} = [0.0298 - 0.0151 - 0.0603]$

The input-output model (in DE) is then recovered as

$$y[k] - 0.5073y[k-1] = 2.0232u[k-1]$$
(6)

IIT Madras

Iterative PCA (Narasimhan and Shah, 2008)

Core Idea

Perform PCA of scaled data with a scaling factor of $\Sigma_{\mathbf{e}}^{-1/2}$, i.e., $\mathbf{z} \rightarrow \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.

Iterative PCA (Narasimhan and Shah, 2008)

Core Idea

Perform PCA of scaled data with a scaling factor of $\Sigma_{\mathbf{e}}^{-1/2}$, i.e., $\mathbf{z} \rightarrow \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.

Result

Eigenvalues of the (sample) covariance matrices are shifted by unity!

$$\lambda(\mathbf{S}_{\tilde{\mathbf{z}}}) = \lambda(\mathbf{S}_{\tilde{\mathbf{x}}}) + 1$$

Iterative PCA (Narasimhan and Shah, 2008)

Core Idea

Perform PCA of scaled data with a scaling factor of $\Sigma_{\mathbf{e}}^{-1/2}$, i.e., $\mathbf{z} \rightarrow \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.

Result

Eigenvalues of the (sample) covariance matrices are shifted by unity!

$$\lambda(\mathbf{S}_{\tilde{\mathbf{z}}}) = \lambda(\mathbf{S}_{\tilde{\mathbf{x}}}) + 1$$

Framework:

- 1. Output-error model: $\mathbf{z}[k] = \mathbf{x}[k] + \mathbf{e}[k]$, $\mathbf{e}[k] \sim \mathsf{GWN}(\mathbf{0}, \Sigma_{\mathbf{e}})$ (diagonal $\Sigma_{\mathbf{e}}$)
- 2. Quasi-stationarity: Noise-free signals $\{x_i[k]\}_{i=1}^M$ are quasi-stationary.
- 3. Identifiability: Number of constraints should satisfy

$$\boxed{\frac{d(d+1)}{2} > M}$$

IIT Madras

Dynamic IPCA for Identification

(8)

Estimating $\boldsymbol{\Sigma}_{\mathbf{e}}$ in IPCA

Iteratively estimate the noise covariance matrix and (a basis for) A.

Suppose the user-supplied d is correct and at some iteration, $\hat{\mathbf{A}}^{(i)}$ is the solution. Then,

$$\hat{\mathbf{A}}^{(i)}\mathbf{z}[k] = \hat{\mathbf{A}}^{(i)}\mathbf{x}[k] + \hat{\mathbf{A}}^{(i)}\mathbf{e}[k] = \underbrace{\hat{\mathbf{A}}^{(i)}\mathbf{e}[k]}_{\hat{\mathbf{A}}^{(i)}\mathbf{e}[k]}$$
(9)

Image: A mathematical states and a mathem

(3)

Estimating $\boldsymbol{\Sigma}_{\mathbf{e}}$ in IPCA

Iteratively estimate the noise covariance matrix and (a basis for) A.

Suppose the user-supplied d is correct and at some iteration, $\hat{\mathbf{A}}^{(i)}$ is the solution. Then,

$$\hat{\mathbf{A}}^{(i)}\mathbf{z}[k] = \hat{\mathbf{A}}^{(i)}\mathbf{x}[k] + \hat{\mathbf{A}}^{(i)}\mathbf{e}[k] = \overbrace{\hat{\mathbf{A}}^{(i)}\mathbf{e}[k]}^{\mathbf{r}[k]}$$
(9)

The covariance of the residuals $\mathbf{r}[k]$ and that of the noise are related as

$$\Sigma_{\mathbf{r}} = \hat{\mathbf{A}}^{(0)} \Sigma_e (\hat{\mathbf{A}}^{(0)})^T$$
(10)

→ 글 ▶ - 글

Estimating $\boldsymbol{\Sigma}_{\mathbf{e}}$ in IPCA

Iteratively estimate the noise covariance matrix and (a basis for) \mathbf{A} .

Suppose the user-supplied d is correct and at some iteration, $\hat{\mathbf{A}}^{(i)}$ is the solution. Then,

$$\hat{\mathbf{A}}^{(i)}\mathbf{z}[k] = \hat{\mathbf{A}}^{(i)}\mathbf{x}[k] + \hat{\mathbf{A}}^{(i)}\mathbf{e}[k] = \underbrace{\hat{\mathbf{A}}^{(i)}\mathbf{e}[k]}^{\mathbf{r}[k]}$$
(9)

The covariance of the residuals $\mathbf{r}[k]$ and that of the noise are related as

$$\Sigma_{\mathbf{r}} = \hat{\mathbf{A}}^{(0)} \Sigma_e (\hat{\mathbf{A}}^{(0)})^T$$
(10)

Under these conditions, a (conditionally) optimal estimate of Σ_e can be generated by solving the following MLE problem:

$$\underbrace{\min_{\Sigma_{e}} N \log \det \hat{\mathbf{A}}^{(i)} \Sigma_{e} (\hat{\mathbf{A}}^{(i)})^{T} + \sum_{k=0}^{N-1} (\mathbf{r}^{T}[k] (\hat{\mathbf{A}}^{(i)} \Sigma_{e} (\hat{\mathbf{A}}^{(i)})^{T})^{-1} \mathbf{r}[k])}_{\text{JIT Madras}} \underbrace{(11)}_{\text{June 08, 2016}} = \underbrace{(22)}_{22} \underbrace{(22)}_$$

IPCA Algorithm

- 1. Stack the given N observations of M variables into a $N \times M$ matrix Z.
- 2. Set counter i = 0 and $\Sigma_{e} = I$. Guess a value of d as dictated by the identifiability criterion.
- 3. Scale data as $\mathbf{z}[k] :\to \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}[k]$ and obtain estimate of constraint matrix, $\hat{\mathbf{A}}^{(k)}$ from PCA of scaled data.
- 4. Compute the estimate of noise covariance matrix $\Sigma_e^{(k)}$ from solving (11).
- 5. Increment $i :\rightarrow i + 1$ and repeat steps 3-4 until convergence.

▶ If dim(unity eigenvalues) does not match the guessed value, repeat steps 2-4 with a refined guess of d.

Example: Flow mixing

Two flows mixing at three nodes of a flow network to produce three other flows

$$\begin{aligned} x_{3}[k] &= 2x_{1}[k] + 3x_{2}[k] \\ x_{4}[k] &= x_{1}[k] + x_{2}[k] \\ x_{5}[k] &= x_{1}[k] - 2x_{2}[k] \end{aligned} \tag{12a} \\ \end{aligned}$$

Observe: Sufficient redundancy is available, i.e., the identifiability requirement is satisfied since $d_0 = 3$ and $d_0(d_0 + 1)/2 = 6 > M = 5$.

Flow mixing example: Remarks

- ▶ Two flows $x_1[k]$ and $x_2[k]$ are generated randomly. Flows x_3 to x_5 generated as per (12).
- ▶ Measurements: z_i[k] = x_i[k] + e_i[k], e_i[k] ~ GWN(0, σ_i²), i = 1, · · · , 5. SNR is set to 10. The true noise covariance matrix is,

$$\Sigma_{\mathbf{e},0} = \mathsf{diag}(0.1, 0.1, 1.3, 2, 0.5) \tag{13}$$

The true constraint and regressor matrices are:

$$\mathbf{A}_{0} = \begin{bmatrix} 2 & 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & -1 & 0 \\ 1 & -2 & 0 & 0 & -1 \end{bmatrix} \qquad \mathbf{B}_{0} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 1 & -2 \end{bmatrix}$$
(14)

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへで

Flow mixing example: Results from IPCA

Guess d = 3 (the minimum identifiable constraints) and initialize with estimates from PCA.

Singular values (σ_i)	6.0307, 4.2764, 1.0053, 0.9987, 0.9956 (IPCA)
	55.5795, 40.5724, 9.5545, 9.2713, 9.0856 (PCA)
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
Constraint matrix $\hat{f A}$	-1.9351 -1.4441 0.4065 0.8119 0.2760
	$\begin{bmatrix} -0.4021 & 1.4974 & 0.4115 & -1.2332 & 0.7663 \end{bmatrix}$
Covariance matrix $\hat{\Sigma}_{e}$	0.1123, 0.0993, 1.3163, 0.1846, 0.4352 (diagonal)
	$\left[0.536 0.82 \right] \left[2.063 2.956 \right] \left[2 3 \right]$
Regressor matrices $\hat{\mathbf{B}}_{PCA}$, $\hat{\mathbf{B}}_{IPCA}$	0.689 0.693 , 1.001 0.971 , 1 1
una 2 ₀ ,	$\left[\begin{array}{ccc} 0.461 & -0.913 \end{array} \right] \left[1.028 & -1.979 \right] \left[1 & -2 \right]$
IIT Madras	Dynamic IPCA for Identification June 08, 2016 26

Extending IPCA to the dynamic case

Stacking with lags up to **true order and delay** (if known) does not provide adequate redundancy to estimate both model and noise covariance matrix!

Example: For the first-order, unit-delay example, stacking exactly with d = 1 and unit delay, for **diagonal** $\Sigma_{\mathbf{e}}$ would require estimation of M = 3 (y[k], y[k-1], u[k-1]) variances. However, $d(d+1)/2 = 1 \neq M = 3$.

Extending IPCA to the dynamic case

Stacking with lags up to **true order and delay** (if known) does not provide adequate redundancy to estimate both model and noise covariance matrix!

Example: For the first-order, unit-delay example, stacking exactly with d = 1 and unit delay, for **diagonal** $\Sigma_{\mathbf{e}}$ would require estimation of M = 3 (y[k], y[k-1], u[k-1]) variances. However, $d(d+1)/2 = 1 \geq M = 3$.

Proposition

- 1. Exploit the fact that $\operatorname{diag}(\Sigma_{\mathbf{e}}) = \begin{bmatrix} \sigma_y^2 \mathbf{1}_{m+2} & \sigma_u^2 \mathbf{1}_{m+2} \end{bmatrix}$ and **modify** IPCA.
- 2. Stack variables with "sufficiently" excess lags

$$\mathbf{z}_{L}[k] = \begin{bmatrix} y[k] & y[k-1] & \cdots & y[k-L] & u[k] & u[k-1] & \cdots & u[k-L] \end{bmatrix}$$
 (15)

such that $L>(n_y+n_u)$ (in practice $L\gg(n_y+n_u)$ is better).

Recovering the model: The idea of rotation

Challenge: Stacking lagged variables in excess (of true order and delay) produces multiple relations, i.e., constraints in excess of the true number, are obtained!

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Recovering the model: The idea of rotation

Challenge: Stacking lagged variables in excess (of true order and delay) produces multiple relations, i.e., constraints in excess of the true number, are obtained!

Proposed method

Consider the **SISO** case with true order d_0 .

- Assume that IPCA of the stacked matrix \mathbf{Z}_L identifies p constraints, $p > d_0$.
- ► Then the identified constraint matrix A is of size (p × (2L + 2)). Partitioning A as earlier, we have

$$\tilde{\mathbf{A}}_{D}\mathbf{y}_{L} = -\tilde{\mathbf{A}}_{I}\mathbf{u}_{L}$$
(16)

 \blacktriangleright Rotate \mathbf{A}_{D} through a rotation matrix \mathbf{R}_{D} such that

$$\mathsf{structure}(\mathbf{R}_D \bar{\mathbf{A}}_D) = \mathsf{structure}(\mathbf{A}_{D,0}) \tag{17}$$

where $\mathbf{A}_{D,0}$ is the **true** constraint matrix for the given stacking. Rotate $\bar{\mathbf{A}}_I$ through the same matrix, i.e., $\bar{\mathbf{A}}_I :\rightarrow \mathbf{R}_D \bar{\mathbf{A}}_I$.

Determining the true structure

The key to recovering the model is in determining the structure of $A_{D,0}$.

1. Known order: Locations of zero and non-zero entries in $A_{D,0}$ are known \implies structure $(A_{D,0})$ is known, by virtue of the shift property of lagged relations.

For a first-order with unit-delay,

$$\mathbf{A}_{D,0} = \begin{bmatrix} 1 & a_1 & 0\\ 0 & 1 & a_1 \end{bmatrix}$$
(18)

Determining the true structure

The key to recovering the model is in determining the structure of $A_{D,0}$.

1. Known order: Locations of zero and non-zero entries in $A_{D,0}$ are known \implies structure $(A_{D,0})$ is known, by virtue of the shift property of lagged relations.

For a first-order with unit-delay,

$$\mathbf{A}_{D,0} = \begin{bmatrix} 1 & a_1 & 0\\ 0 & 1 & a_1 \end{bmatrix}$$
(18)

2. Unknown order: First determine the order using the relation

p = L - d + 1 where $d = \max(\text{input, output order})$

(19)

Subsequently, follow the known-order route.

IIT Madras

Dynamic IPCA for Identification

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト 二 ヨー わえの

Arriving at the model

Estimating the rotation matrix

The rotation matrix $\mathbf{R}_D \in \mathbb{R}^{p imes p}$ can be estimated in two different ways

- 1. *Exact route:* Estimate \mathbf{R}_D by exactly matching the zero- and unity-values.
- 2. Overdetermined route: Estimate \mathbf{R}_D by additionally forcing the non-zero entries to match across rows.
- ▶ The overdetermined method is preferred in presence of noise.

Finally, the nearly identical multiple relations (from $\mathbf{R}_D \bar{\mathbf{A}}_D$ and $\mathbf{R}_D \bar{\mathbf{A}}_I$) thus identified can be averaged to obtain a single relation.

Motivational example (first-order, unit-delay)

Assume order is known. Stack up to lag L = 2 (minimum requirement).

1. Construct $\mathbf{z_2}[k]$ and $\mathbf{Z_2}$ as

$$\mathbf{z_2}[k] = \begin{bmatrix} y[k] & y[k-1] & y[k-2] & u[k] & u[k-1] & u[k-2] \end{bmatrix} \end{bmatrix}^T$$
$$\mathbf{Z_2} = \begin{bmatrix} \mathbf{z_2}[2] & \mathbf{z_2}[3] & \cdots & \mathbf{z_2}[N] \end{bmatrix}^T$$

2. Eigenvalues are found to be

 $\Lambda = \begin{bmatrix} 10.4 & 5.09 & 3.6 & 1.079 & 0.2086 & 0.1607 \end{bmatrix}$

3. Eigenvalues after two iterations of modified IPCA

 $\Lambda = \begin{bmatrix} 25.74 & 16.26 & 11.41 & 10.88 & 1.0005 & 0.9995 \end{bmatrix}$

4. Estimated Σ_e : [0.5151 0.0989], true values [0.5758 0.0918].

IIT Madras

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト 二 ヨー わえの

Rotation Matrix Estimation

1. Partition the (2×6) from two IPCA iterations into submatrices corresponding to dependent and independent variables

$$\hat{\mathbf{A}}_D \mathbf{y}_2[k] = -\hat{\mathbf{A}}_I \mathbf{u}_2$$

$$\begin{bmatrix} 0.0312 & -0.0116 & -0.0023 \\ 0.0041 & 0.0291 & -0.0158 \end{bmatrix} \begin{bmatrix} y[k] \\ y[k-1] \\ y[k-2] \end{bmatrix} = -\begin{bmatrix} 0.0021 & -0.0635 & -0.0080 \\ 0.0006 & -0.0063 & -0.0637 \end{bmatrix} \begin{bmatrix} u[k] \\ u[k-1] \\ u[k-2] \end{bmatrix}$$

2. Construct the structure of $\mathbf{A}_{D,0}$ from known order and shift property.

$$\mathbf{A}_{D,0} = \begin{bmatrix} 1 & a_{11} & 0 \\ 0 & 1 & a_{11} \end{bmatrix}$$

3. Estimate rotation matrix \mathbf{R} (2 imes 2) using overdetermined approach

IIT Madras

▲ロト ▲御 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん()

Model Parameters Estimation

1. Pre-multiply the estimated constraint matrix using \mathbf{R} .

$$\mathbf{R}_D \hat{\mathbf{A}}_D = -\mathbf{R}_D \hat{\mathbf{A}}_I$$

$$\begin{bmatrix} 0.9983 & -0.5083 & -0.0063 \\ 0.0008 & 1.0016 & -0.5051 \end{bmatrix} \mathbf{y}_2 = \begin{bmatrix} -0.0653 & 2.0428 & -0.0226 \\ -0.0116 & -0.0642 & 2.0496 \end{bmatrix} \mathbf{u}_2$$

The estimated model is averaged to obtain:

$$y[k] - 0.5067y[k-1] = 2.0462u[k-1]$$
⁽²⁰⁾

Model Parameters Estimation

1. Pre-multiply the estimated constraint matrix using \mathbf{R} .

$$\mathbf{R}_{D}\hat{\mathbf{A}}_{D} = -\mathbf{R}_{D}\hat{\mathbf{A}}_{I}$$

$$\begin{array}{ccccccc} 0.9983 & -0.5083 & -0.0063\\ 0.0008 & 1.0016 & -0.5051 \end{array} \mathbf{y}_{2} = \begin{bmatrix} -0.0653 & 2.0428 & -0.0226\\ -0.0116 & -0.0642 & 2.0496 \end{bmatrix} \mathbf{u}_{2}$$

The estimated model is averaged to obtain:

$$y[k] - 0.5067y[k-1] = 2.0462u[k-1]$$
⁽²⁰⁾

2. MC simulations are performed for SNR = 10 and lag order 2. Parameter estimates are found to follow a Gaussian distribution. The average model with 95% Cls are.

$$y[k] - \underset{(\pm 0.0255)}{0.5003} y[k-1] = -\underset{(\pm 0.068)}{0.001} u[k] + \underset{(\pm 0.1008)}{2.0022} u[k-1]$$

Example 2: DIPCA

Measurements (N = 1023) from a simulation process with full band PRBS input.

1. Construct augmented data matrix for up to lag order $\boldsymbol{6}$

$$\mathbf{z_6}[k] = \begin{bmatrix} y[k] & y[k-1] \dots y[k-6] & u[k] & u[k-1] \dots u[k-6] \end{bmatrix} \end{bmatrix}^T$$
$$\mathbf{Z_6} = \begin{bmatrix} \mathbf{z_6}[6] & \mathbf{z_6}[7] & \cdots & \mathbf{z_6}[N-1] \end{bmatrix}^T$$

Example 2: DIPCA

Measurements (N = 1023) from a simulation process with full band PRBS input.

1. Construct augmented data matrix for up to lag order $\boldsymbol{6}$

$$\mathbf{z_6}[k] = \begin{bmatrix} y[k] & y[k-1] \dots y[k-6] & u[k] & u[k-1] \dots u[k-6] \end{bmatrix} \end{bmatrix}^T$$
$$\mathbf{Z_6} = \begin{bmatrix} \mathbf{z_6}[6] & \mathbf{z_6}[7] & \cdots & \mathbf{z_6}[N-1] \end{bmatrix}^T$$

Eigenvalues

Figure 3: From DIPCA with guess d = 4 Figure 4: From DIPCA with guess d = 5

Figure 3 shows even though d = 4 eigenvalues were expected to be unity but last 5 turned out to be unity. Figure 4 shows last 5 eigenvalues to be unity as expected. So order is derived as d = 6 - 5 + 1 = 2.

IIT Madras

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model Parameters

1. The model is estimated to be a second-order DE:

y[k] - 0.972y[k-1] + 0.199y[k-2] = -0.028u[k] + 2.596u[k-1] - 2.472u[k-2]

Noise variance is estimated to be $[1.2567 \quad 0.2067]$; true values: $[1.3949 \quad 0.1926]$.

2. DIPCA gives consistent estimates.

Check: sample size is increased to N = 12000 for SNR = 5. Model is determined as second-order:

y[k] - 1.005y[k-1] + 0.241y[k-2] = 0.029u[k] + 2.486u[k-1] - 2.358u[k-2]

Noise variance is estimated to be $[1.4059 \quad 0.1984]$; true values: $[1.3746 \quad 0.1984]$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ●

Confidence Intervals

Sample size is fixed at N = 1023 and SNR 5 while performing MC simulations. Confidence interval with the proposed approach:

$$\begin{split} y[k] &- \underbrace{0.9981}_{(\pm 0.0654)} y[k-1] + \underbrace{0.2368}_{(\pm 0.0582)} y[k-2] = \\ &- \underbrace{0.0082}_{(\pm 0.1708)} u[k] + \underbrace{2.5161}_{(\pm 0.3910)} u[k-1] - \underbrace{2.3874}_{(\pm 0.4093)} u[k-1] \end{split}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへの

Confidence Intervals

Sample size is fixed at N = 1023 and SNR 5 while performing MC simulations. Confidence interval with the proposed approach:

$$\begin{split} y[k] - & \underset{(\pm 0.0654)}{0.9981} y[k-1] + & \underset{(\pm 0.0582)}{0.2368} y[k-2] = \\ & - & \underset{(\pm 0.1708)}{0.0082} u[k] + & \underset{(\pm 0.3910)}{2.5161} u[k-1] - & \underset{(\pm 0.4093)}{2.3874} u[k-1] \end{split}$$

Data generating process:

$$y[k] - y[k-1] + 0.24y[k-2] = 2.5u[k-1] - 2.375u[k-2]$$

Data was generated for full length (N = 1023), full band PRBS input and noise with SNR = 5 was added to both input and output signals.

IIT Madras

<ロト <回ト < 回ト < 回ト < 回ト = 三

Concluding remarks

- A systematic, rigorous method to accurately estimate the dynamic model for the EIV case using dynamic, iterative PCA has been presented.
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Noise covariance estimate is also provided.
 - Estimator is observed to be consistent.

< ≣ >

Concluding remarks

- A systematic, rigorous method to accurately estimate the dynamic model for the EIV case using dynamic, iterative PCA has been presented.
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Noise covariance estimate is also provided.
 - Estimator is observed to be consistent.
- Extensions to MISO and MIMO case:
 - Break up the given system into individual SISO systems using signal conditioning, i.e., work with *partial* covariance matrices.

< ⊒ >

Bibliography

- Ku, W., R. Storer, and C. Georgakis (1995). Disturbance detection and isolation by dynamic principal component analysis. *Chemometrics and Intelligent Laboratory Systems*, 30, pp. 179–196.
- Narasimhan, S. and S. Shah (2008). Model identification and error covariance matrix estimation from noisy data using PCA. *Control Engineering Practice*, 16, pp. 146–155.
 - Tangirala, A. K. (2014). Principles of System Identification: Theory and Practice. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group.