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Identification of OE models using GSD

Problem statement and setting

Objective

Identify the dynamic (difference equation) model from input data and output

measurements using generalized spectral decomposition (GSD)

Framework / Assumptions:

I Linear time-invariant (LTI)

processes.

I Output is known only with errors.

I Order and delay are unknown.

I Output noise variance is unknown.

Figure 1: OE Model Setup
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na∑
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j=D

bju
?[k − j], η = max(na, nb)
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Identification of OE models using GSD

Existing Methods (Ljung, 1998)

I Prediction Error Minimization (PEM) : minimize n-step ahead prediction

error

I Steiglitz-McBride (SM) : minimizes the mean-square error between system

and model outputs

I Instrumental Variable (IV) : Utilizes combination of projection & linear

algebra based approach

Shortcomings

All these approaches deliver unbiased and consistent parameter estimates but for

right choice of model structure - delay, order
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Identification of OE models using GSD

Model Structure Determination

I Pre-Estimation

I User specified using domain /

process knowledge

I Nonparametric analysis : step

response, frequency domain

methods
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Identification of OE models using GSD

Model Structure Determination

I Pre-Estimation

I User specified using domain /

process knowledge

I Nonparametric analysis : step

response, frequency domain

methods

I During Estimation

I Regularization /

Sparsification / Compressed

sensing

I Post Estimation

I Residual Analysis

I Information criteria such as

AIC or BIC
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Identification of OE models using GSD

Comparison of Methodology

Figure 2: Comparison of Existing & Proposed Method
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Identification of OE models using GSD

Dynamic Iterative PCA (Maurya et al., 2018)

Figure 3: EIV Setup

DIPCA iteratively estimates

I noise covariance matrix

I equation order, η̂

I parameter vector, θ̂
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Identification of OE models using GSD

PCA for identification: Quick review (Jollife, 2002)

Suppose z?[k] ∈ RM×1 are instantaneously related through d linear constraints

Az?[k] = 0, A ∈ Rd×M , rank(A) = d (1)

Then, given N noise-free observations of z?[k] in Z? = {z?[k]}N−1
k=0 ∈ RN×M , the

following results fall out from the SVD (PCA) of Z? under d < M

1. rank(Z?) = M − d, i.e., the last d singular values, σM−d+1 = · · · = σM = 0.

2. The right singular vectors corresponding to the d zero singular values provide a

basis for the null space of Z?, i.e.,

Ā , V̄ =
[
vM−d+1 vM−d+2 · · · vM

]T
= TA, det(T) 6= 0 (2)
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Identification of OE models using GSD

PCA & Variants
Z = Z? + E, Z?AT = 0

PCA produces unbiased estimates only in homoskedastic case, meaning

Σe = σ2
eI

Iterative PCA (Narasimhan and Shah, 2008)

I Core idea : Transform heteroskedastic problem to homoskedastic case by

scaling with Σ
−1/2
e , i.e., z→ z̃ , Σ

−1/2
e z.

I Result : Eigenvalues of the (sample) covariance matrices are shifted by

unity!

λ(Sz̃) = λ(Sz) + 1, Sz̃ =
1

N
ZTZ
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Identification of OE models using GSD

Dynamic PCA (Ku et al., 1995)

Idea: Apply static PCA to the matrix of lagged measurements Z, i.e., treat the

dynamic relation as a static constraint on lagged variables.

Z =


y[k] . . . y[k − L] u[k] . . . u[k − L]

y[k + 1] . . . y[k − L+ 1] u[k + 1] . . . u[k − L+ 1]
... . . .

...
... . . .

...

y[N − L] . . . y[N − L] u[N − L] . . . u[N ]


Underlying relation: Z?AT = 0

DPCA requires exact stacking i.e. L = η =⇒ Order has to be known

Optimal only for homoskedastic cases i.e σ2
eu = σ2

ey
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Identification of OE models using GSD

Dynamic Iterative PCA (Maurya et al., 2018)

Noise Covariance Matrix (Σe) is available

I Sufficiently over-stack the lagged input-output variables.

I Scale the data z→ z̃ , Σ
−1/2
e z.

I Identify number of linear relations (d) by applying PCA on scaled

measurements

I Estimate equation order using η̂ = L− d̂+ 1

I Reconfigure the data matrix with η̂ and estimate model coefficients from

last eigenvector.

Noise Covariance Matrix (Σe) is NOT available

Estimate Σe by maximizing the likelihood of residuals from the assumed

model.
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Identification of OE models using GSD

Revisiting Classical Problem

I Scaling ?
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Revisiting Classical Problem

I Scaling ?

I Over-stacking of lagged variables ?
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Identification of OE models using GSD

Revisiting Classical Problem

I Scaling ?

I Over-stacking of lagged variables ?

I Eigen-value shift ?
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Identification of OE models using GSD

For known order & noise variance
Proposition

DIPCA algorithm minimizes the weighted TLS cost function which could be

derived from generalized spectral decomposition

SZsVs = VsΛs

1

N − ηL−TZTZL−1Vs = VsΛs

L−TSZL−1Vs = VsΛs

Pre-multiplying both sides with L−1

L−1L−TSZL−1Vs = L−1VsΛs

SZL−1Vs = ΣeL
−1VsΛs

SZV = ΣeVΛs
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Identification of OE models using GSD

For known order & noise variance

y?[k] + 0.4y?[k − 1] + 0.6y?[k − 2] = 1.2u?[k − 1]

y[k] = y?[k] + ey[k], var(ey) = 0.23 s.t SNR = 10


2.63 −0.6 −1.23 1.2

−0.60 2.63 −0.6 0

−1.23 −0.6 2.63 −0.02

1.2 0 −0.02 1

V =


0.23 0 0 0

0 0.23 0 0

0 0 0.23 0

0 0 0 0

VΛ

0 50 100 150 200
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0

5

y

Snapshot of input & measured output profile

20 40 60 80 100 120 140 160 180 200

Samples

-1

0
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u
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Identification of OE models using GSD

For known order & noise variance

y?[k] + 0.4y?[k − 1] + 0.6y?[k − 2] = 1.2u?[k − 1]

y[k] = y?[k] + ey[k], var(ey) = 0.23 s.t SNR = 10


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1.2 0 −0.02 1
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Spectral Decomposition using QZ algorithm

λmin = 0.97 θ̂ =
[
1 0.4015 0.5994 -1.1907

]T
X
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Identification of OE models using GSD

For known noise variance

Can use the idea of over-stacking lagged variables (regressors)

Szv = λΣv, Σ =

[
Σey 0

0 0

]
lim

N→∞
E[Sz] = Sz? + Σ

(Sz? + Σ)v = λΣv

Sz?v = (λ− 1)Σv
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Identification of OE models using GSD

For known noise variance

Can use the idea of over-stacking lagged variables (regressors)

Szv = λΣv, Σ =

[
Σey 0

0 0

]
lim

N→∞
E[Sz] = Sz? + Σ

(Sz? + Σ)v = λΣv

Sz?v = (λ− 1)Σv

Eigenvalue shift theorem doesn’t hold but zero eigenvalues of noise-free data

maps to unity generalized eigenvalues.
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Identification of OE models using GSD

Generalized Case

Order, delay and output noise variance are unknown

Szv = λΣv

where, Σ =

[
Σey 0

0 0

]

= σ2
ey

[
I 0

0 0

]
= σ2

eyΣ
′

Sz?v = (λ− σ2
ey )Σ

′
v

Order, η̂ = L− d̂+ 1 = 5− 4 + 1 = 2 X

Model, ŷ[k] + 0.4005
±(0.019)

ŷ[k − 1] + 0.6018
±(0.018)

ŷ[k − 2] = 1.1976
±(0.036)

u[k − 1] X
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Generalized Eigenvalues at L = 5 by QZ Algorithm
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Identification of OE models using GSD

Two non-interacting tank system

dh1(t)

dt
+
Cv1

A1

√
h1(t) =

1

A1
Fi(t)

dh2(t)

dt
+
Cv2
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√
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Two non-interacting tank system

Step 1: Order Determination

Last 6 eigenvalues for L = 4

Λ =
[
2.03 0.0795 0.0457 0.044 0.0432

]
η̂ = L− d̂+ 1 = 2

Step2 : Model Estimation

Ĝ(z−1) =
0.4208z−1 + 0.352z−2

1 − 1.4437z−1 + 0.493z−2

G(s) =
0.2813

s2 + 0.3896s+ 0.0176

Discretization under ZOH assumption

G(z−1) =
0.44z−1 + 0.33z−2

1 − 1.41z−1 + 0.46z−2
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Identification of OE models using GSD

Concluding Remarks

I A systematic, rigorous method to accurately

estimate the dynamic model using generalized

spectral decomposition

I Minimal user intervention (maximum

stacking lag to be supplied).

I Determines the order

I Delivers output noise variance

I Estimator is observed to be consistent

I Proposed algorithm non-iterative and consists of two steps only.

I Generalized framework which could handle both EIV and classical case

with different model structures.
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Identification of OE models using GSD

Future Work

I Extension to closed loop systems

I Extension for colored noise structure such as

I Autoregressive with exogenous input (under

review in ICASSP 2019)

I ARMAX, Box-Jenkins model

I Extensions to MISO and MIMO case:

I Break up the given system into individual SISO

systems using signal conditioning, i.e., work

with partial covariance matrices.
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QZ Algorithm

The QZ algorithm is numerical method for solving generalized eigenvalue problem

Av = ΛBv (3)

without performing matrix inversion B.

1. The idea is to transform (3) to

QAZy = ΛQBZy, under v = Zy (4)

where Q and Z are unitary matrices such that QAZ and QBZ are upper

triangular

2. Eigenvalues can be computed from the diagonals of the triangular form.

Eigenvectors can be computed by transforming back the eigenvectors of

triangular problem with Z
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