Identification of Output-Error (OE) Models using Generalized Spectral Decomposition

Deepak Maurya, Arun K. Tangirala and Shankar Narasimhan

Systems and Controls Group IIT Madras

January 10, 2019

IIT Madras

Generalized Spectral Decomposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 January 10, 2019

Objective

Identify the dynamic (difference equation) model from input data and output measurements using generalized spectral decomposition (GSD)

Objective

Identify the dynamic (difference equation) model from input data and output measurements using generalized spectral decomposition (GSD)

Framework / Assumptions:

 Linear time-invariant (LTI) processes.

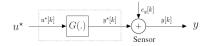


Figure 1: OE Model Setup

$$y^{\star}[k] + \sum_{i=1}^{n_a} a_i y^{\star}[k-i] = \sum_{j=D}^{n_b} b_j u^{\star}[k-j], \qquad \eta = \max(n_a, n_b)$$

Objective

Identify the dynamic (difference equation) model from input data and output measurements using generalized spectral decomposition (GSD)

Framework / Assumptions:

- Linear time-invariant (LTI) processes.
- **Output** is known only with **errors**.

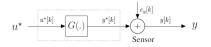


Figure 1: OE Model Setup

$$y^{\star}[k] + \sum_{i=1}^{n_a} a_i y^{\star}[k-i] = \sum_{j=D}^{n_b} b_j u^{\star}[k-j], \qquad \eta = \max(n_a, n_b)$$

Objective

Identify the dynamic (difference equation) model from input data and output measurements using generalized spectral decomposition (GSD)

Framework / Assumptions:

- Linear time-invariant (LTI) processes.
- **Output** is known only with errors.
- Order and delay are unknown.

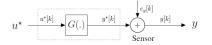


Figure 1: OE Model Setup

$$y^{\star}[k] + \sum_{i=1}^{n_a} a_i y^{\star}[k-i] = \sum_{j=D}^{n_b} b_j u^{\star}[k-j], \qquad \eta = \max(n_a, n_b)$$

Objective

Identify the dynamic (difference equation) model from input data and output measurements using generalized spectral decomposition (GSD)

Framework / Assumptions:

- Linear time-invariant (LTI) processes.
- **Output** is known only with errors.
- Order and delay are unknown.
- Output noise variance is unknown.

$$y^{\star}[k] + \sum_{i=1}^{n_a} a_i y^{\star}[k-i] = \sum_{j=D}^{n_b} b_j u^{\star}[k-j], \qquad \eta = \max(n_a, n_b)$$

Generalized Spectral Decomposition

 $u^{\star} \xrightarrow{u^{*}[k]} G(.) \xrightarrow{y^{*}[k]} \xrightarrow{\downarrow_{e_{y}[k]}} y[k] \xrightarrow{y[k]} y$

Figure 1: OE Model Setup

Existing Methods (Ljung, 1998)

- Prediction Error Minimization (PEM) : minimize *n*-step ahead prediction error
- Steiglitz-McBride (SM) : minimizes the mean-square error between system and model outputs
- Instrumental Variable (IV) : Utilizes combination of projection & linear algebra based approach

Existing Methods (Ljung, 1998)

- Prediction Error Minimization (PEM) : minimize *n*-step ahead prediction error
- Steiglitz-McBride (SM) : minimizes the mean-square error between system and model outputs
- Instrumental Variable (IV) : Utilizes combination of projection & linear algebra based approach

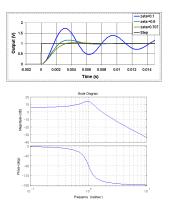
Shortcomings

All these approaches deliver unbiased and consistent parameter estimates but for right choice of model structure - delay, order

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model Structure Determination

- Pre-Estimation
 - User specified using domain / process knowledge
 - Nonparametric analysis : step response, frequency domain methods



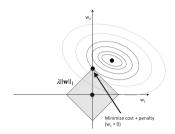
H 5

A D > A P > A

Model Structure Determination

Pre-Estimation

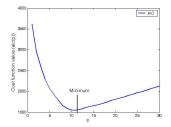
- User specified using domain / process knowledge
- Nonparametric analysis : step response, frequency domain methods
- During Estimation
 - Regularization / Sparsification / Compressed sensing



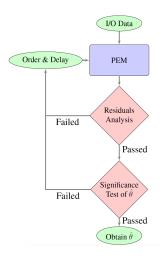
A D > A P > A

Model Structure Determination

- Pre-Estimation
 - User specified using domain / process knowledge
 - Nonparametric analysis : step response, frequency domain methods
- During Estimation
 - Regularization / Sparsification / Compressed sensing
- Post Estimation
 - Residual Analysis
 - Information criteria such as AIC or BIC



Comparison of Methodology



3

Comparison of Methodology

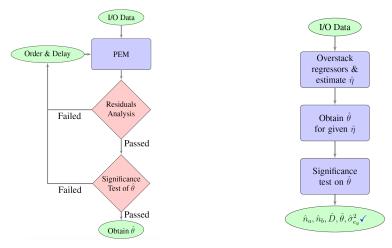


Figure 2: Comparison of Existing & Proposed Method

Generalized Spectral Decomposition

イロト 不得下 イヨト イヨト 二日

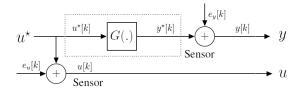
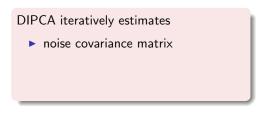


Figure 3: EIV Setup



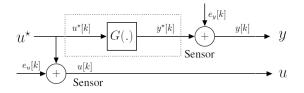


Figure 3: EIV Setup



- noise covariance matrix
- \blacktriangleright equation order, $\hat{\eta}$

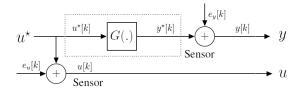


Figure 3: EIV Setup

- noise covariance matrix
- equation order, $\hat{\eta}$
- parameter vector, $\hat{\theta}$

PCA for identification: Quick review (Jollife, 2002)

Suppose $\mathbf{z}^{\star}[k] \in \mathbb{R}^{M \times 1}$ are **instantaneously** related through d **linear** constraints

$$\mathbf{Az}^{\star}[k] = 0, \qquad \mathbf{A} \in \mathbb{R}^{d \times M}, \ \mathsf{rank}(\mathbf{A}) = d \qquad (1)$$

Then, given N noise-free observations of $\mathbf{z}^{\star}[k]$ in $\mathbf{Z}^{\star} = {\{\mathbf{z}^{\star}[k]\}}_{k=0}^{N-1} \in \mathbb{R}^{N \times M}$, the following results fall out from the SVD (PCA) of \mathbf{Z}^{\star} under d < M

- 1. rank $(\mathbf{Z}^{\star}) = M d$, i.e., the last d singular values, $\sigma_{M-d+1} = \cdots = \sigma_M = 0$.
- The right singular vectors corresponding to the *d* zero singular values provide a basis for the null space of Z^{*}, i.e.,

$$\bar{\mathbf{A}} \triangleq \bar{\mathbf{V}} = \begin{bmatrix} \mathbf{v}_{M-d+1} & \mathbf{v}_{M-d+2} & \cdots & \mathbf{v}_M \end{bmatrix}^T = \mathbf{T}\mathbf{A}, \qquad \det(\mathbf{T}) \neq 0$$
 (2)

Identification of OE models using GSD

PCA & Variants

$$\mathbf{Z} = \mathbf{Z}^{\star} + \mathbf{E}, \qquad \mathbf{Z}^{\star} \mathbf{A}^T = \mathbf{0}$$

PCA produces unbiased estimates only in homoskedastic case, meaning $\Sigma_{\bf e}=\sigma_e^2{\bf I}$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

PCA & Variants

$$\mathbf{Z} = \mathbf{Z}^{\star} + \mathbf{E}, \qquad \mathbf{Z}^{\star} \mathbf{A}^T = \mathbf{0}$$

PCA produces unbiased estimates only in homoskedastic case, meaning $\Sigma_{\bf e}=\sigma_e^2{\bf I}$

Iterative PCA (Narasimhan and Shah, 2008)

► Core idea : Transform heteroskedastic problem to homoskedastic case by scaling with $\Sigma_e^{-1/2}$, i.e., $\mathbf{z} \rightarrow \tilde{\mathbf{z}} \triangleq \Sigma_e^{-1/2} \mathbf{z}$.

- 31

PCA & Variants

$$\mathbf{Z} = \mathbf{Z}^{\star} + \mathbf{E}, \qquad \mathbf{Z}^{\star} \mathbf{A}^T = \mathbf{0}$$

PCA produces unbiased estimates only in homoskedastic case, meaning $\Sigma_{\bf e}=\sigma_e^2{\bf I}$

Iterative PCA (Narasimhan and Shah, 2008)

- ► Core idea : Transform heteroskedastic problem to homoskedastic case by scaling with $\Sigma_{e}^{-1/2}$, i.e., $\mathbf{z} \rightarrow \tilde{\mathbf{z}} \triangleq \Sigma_{e}^{-1/2} \mathbf{z}$.
- Result : Eigenvalues of the (sample) covariance matrices are shifted by unity!

$$\lambda(\mathbf{S}_{\tilde{\mathbf{z}}}) = \lambda(\mathbf{S}_{\mathbf{z}}) + 1, \qquad \mathbf{S}_{\tilde{\mathbf{z}}} = \frac{1}{N} \mathbf{Z}^T \mathbf{Z}$$

3

Dynamic PCA (Ku et al., 1995)

Idea: Apply *static* PCA to the matrix of lagged measurements \mathbf{Z} , i.e., treat the dynamic relation as a **static constraint on lagged variables**.

$$\mathbf{Z} = \begin{bmatrix} y[k] & \dots & y[k-L] & u[k] & \dots & u[k-L] \\ y[k+1] & \dots & y[k-L+1] & u[k+1] & \dots & u[k-L+1] \\ \vdots & \dots & \vdots & \vdots & \dots & \vdots \\ y[N-L] & \dots & y[N-L] & u[N-L] & \dots & u[N] \end{bmatrix}$$

Underlying relation: $\mathbf{Z}^* \mathbf{A}^T = 0$

DPCA requires exact stacking i.e. $L = \eta \implies$ Order has to be known

Optimal only for homoskedastic cases i.e $\sigma_{e_u}^2 = \sigma_{e_y}^2$

Noise Covariance Matrix (Σ_e) is available

- Sufficiently over-stack the lagged input-output variables.
- Scale the data $\mathbf{z} \to \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.
- Identify number of linear relations (d) by applying PCA on scaled measurements

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Noise Covariance Matrix (Σ_e) is available

- Sufficiently over-stack the lagged input-output variables.
- Scale the data $\mathbf{z} \to \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.
- Identify number of linear relations (d) by applying PCA on scaled measurements
- Estimate equation order using $\hat{\eta} = L \hat{d} + 1$
- Reconfigure the data matrix with $\hat{\eta}$ and estimate model coefficients from last eigenvector.

イロト 不得 トイヨト イヨト 二日

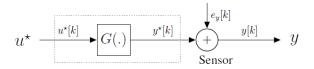
Noise Covariance Matrix (Σ_e) is available

- Sufficiently over-stack the lagged input-output variables.
- Scale the data $\mathbf{z} \to \tilde{\mathbf{z}} \triangleq \Sigma_{\mathbf{e}}^{-1/2} \mathbf{z}$.
- Identify number of linear relations (d) by applying PCA on scaled measurements
- Estimate equation order using $\hat{\eta} = L \hat{d} + 1$
- Reconfigure the data matrix with $\hat{\eta}$ and estimate model coefficients from last eigenvector.

Noise Covariance Matrix (Σ_e) is NOT available

Estimate Σ_e by maximizing the likelihood of residuals from the assumed model.

Revisiting Classical Problem

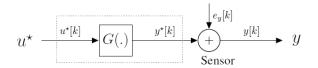


► Scaling ?

Generalized Spectral Decomposition

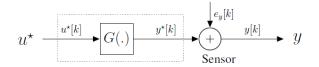
A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Revisiting Classical Problem



- ► Scaling ?
- Over-stacking of lagged variables ?

Revisiting Classical Problem



- ► Scaling ?
- Over-stacking of lagged variables ?
- Eigen-value shift ?

Proposition

DIPCA algorithm minimizes the **weighted TLS** cost function which could be derived from **generalized spectral decomposition**

$$\mathbf{S}_{\mathbf{Z}_{\mathbf{s}}}\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{s}}\boldsymbol{\Lambda}_{\mathbf{s}}$$

Proposition

DIPCA algorithm minimizes the **weighted TLS** cost function which could be derived from **generalized spectral decomposition**

$$\begin{split} \mathbf{S}_{\mathbf{Z}_{\mathbf{s}}}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\boldsymbol{\Lambda}_{\mathbf{s}} \\ \frac{1}{N-\eta}\mathbf{L}^{-T}\mathbf{Z}^{T}\mathbf{Z}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\boldsymbol{\Lambda}_{\mathbf{s}} \end{split}$$

Proposition

DIPCA algorithm minimizes the **weighted TLS** cost function which could be derived from **generalized spectral decomposition**

$$\begin{split} \mathbf{S}_{\mathbf{Z}_{\mathbf{s}}}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \frac{1}{N-\eta}\mathbf{L}^{-T}\mathbf{Z}^{T}\mathbf{Z}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \mathbf{L}^{-T}\mathbf{S}_{\mathbf{Z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}} \end{split}$$

Proposition

DIPCA algorithm minimizes the **weighted TLS** cost function which could be derived from **generalized spectral decomposition**

$$\begin{split} \mathbf{S}_{\mathbf{Z}_{\mathbf{s}}}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \frac{1}{N-\eta}\mathbf{L}^{-T}\mathbf{Z}^{T}\mathbf{Z}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \mathbf{L}^{-T}\mathbf{S}_{\mathbf{z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}} \end{split}$$

Pre-multiplying both sides with \mathbf{L}^{-1}

$$\mathbf{L}^{-1}\mathbf{L}^{-T}\mathbf{S}_{\mathbf{Z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} = \mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}$$

Proposition

DIPCA algorithm minimizes the **weighted TLS** cost function which could be derived from **generalized spectral decomposition**

$$\begin{split} \mathbf{S}_{\mathbf{Z}_{\mathbf{s}}}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \frac{1}{N-\eta}\mathbf{L}^{-T}\mathbf{Z}^{T}\mathbf{Z}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \mathbf{L}^{-T}\mathbf{S}_{\mathbf{Z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}} \end{split}$$

Pre-multiplying both sides with \mathbf{L}^{-1}

$$\begin{split} \mathbf{L}^{-1}\mathbf{L}^{-T}\mathbf{S}_{\mathbf{Z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}}\boldsymbol{\Lambda}_{\mathbf{s}}\\ \mathbf{S}_{\mathbf{Z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \boldsymbol{\Sigma}_{\mathbf{e}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}}\boldsymbol{\Lambda}_{\mathbf{s}} \end{split}$$

Proposition

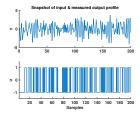
DIPCA algorithm minimizes the **weighted TLS** cost function which could be derived from **generalized spectral decomposition**

$$\begin{split} \mathbf{S}_{\mathbf{Z}_{\mathbf{s}}}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \frac{1}{N-\eta}\mathbf{L}^{-T}\mathbf{Z}^{T}\mathbf{Z}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}}\\ \mathbf{L}^{-T}\mathbf{S}_{\mathbf{Z}}\mathbf{L}^{-1}\mathbf{V}_{\mathbf{s}} &= \mathbf{V}_{\mathbf{s}}\mathbf{\Lambda}_{\mathbf{s}} \end{split}$$

Pre-multiplying both sides with \mathbf{L}^{-1}

$$\begin{split} \mathbf{L}^{-1} \mathbf{L}^{-T} \mathbf{S}_{\mathbf{Z}} \mathbf{L}^{-1} \mathbf{V}_{\mathbf{s}} &= \mathbf{L}^{-1} \mathbf{V}_{\mathbf{s}} \mathbf{\Lambda}_{\mathbf{s}} \\ \mathbf{S}_{\mathbf{Z}} \mathbf{L}^{-1} \mathbf{V}_{\mathbf{s}} &= \boldsymbol{\Sigma}_{\mathbf{e}} \mathbf{L}^{-1} \mathbf{V}_{\mathbf{s}} \mathbf{\Lambda}_{\mathbf{s}} \\ \mathbf{S}_{\mathbf{Z}} \mathbf{V} &= \boldsymbol{\Sigma}_{\mathbf{e}} \mathbf{V} \mathbf{\Lambda}_{\mathbf{s}} \end{split}$$

$$\begin{split} y^{\star}[k] + 0.4y^{\star}[k-1] + 0.6y^{\star}[k-2] &= 1.2u^{\star}[k-1] \\ y[k] &= y^{\star}[k] + e_{y}[k], \quad \text{var}(e_{y}) = 0.23 \quad \text{s.t SNR} = 10 \end{split}$$



A D > A P > A

$$y^{\star}[k] + 0.4y^{\star}[k-1] + 0.6y^{\star}[k-2] = 1.2u^{\star}[k-1]$$
$$y[k] = y^{\star}[k] + e_{y}[k], \quad \operatorname{var}(e_{y}) = 0.23 \quad \text{s.t SNR} = 10$$
$$\begin{bmatrix} 2.63 & -0.6 & -1.23 & 1.2 \\ -0.60 & 2.63 & -0.6 & 0 \\ -1.23 & -0.6 & 2.63 & -0.02 \\ 1.2 & 0 & -0.02 & 1 \end{bmatrix} \mathbf{V} = \begin{bmatrix} 0.23 & 0 & 0 & 0 \\ 0 & 0.23 & 0 & 0 \\ 0 & 0 & 0.23 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{V} \mathbf{\Lambda}$$

< 注→

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

୨

$$y^{\star}[k] + 0.4y^{\star}[k-1] + 0.6y^{\star}[k-2] = 1.2u^{\star}[k-1]$$

$$y[k] = y^{\star}[k] + e_{y}[k], \quad \operatorname{var}(e_{y}) = 0.23 \quad \text{s.t SNR} = 10$$

$$\begin{bmatrix} 2.63 & -0.6 & -1.23 & 1.2 \\ -0.60 & 2.63 & -0.6 & 0 \\ -1.23 & -0.6 & 2.63 & -0.02 \\ 1.2 & 0 & -0.02 & 1 \end{bmatrix} \mathbf{V} = \begin{bmatrix} 0.23 & 0 & 0 & 0 \\ 0 & 0.23 & 0 & 0 \\ 0 & 0 & 0.23 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{V} \mathbf{\Lambda}$$

Spectral Decomposition using QZ algorithm

$$\lambda_{min} = 0.97$$
 $\hat{\theta} = \begin{bmatrix} 1 & 0.4015 & 0.5994 & -1.1907 \end{bmatrix}^T$

A D N A P N A P N

 \checkmark

.≣. ►

Can use the idea of over-stacking lagged variables (regressors)

 $\exists \rightarrow$

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Can use the idea of over-stacking lagged variables (regressors)

$$\mathbf{S}_{\mathbf{z}}\mathbf{v} = \lambda \mathbf{\Sigma}\mathbf{v}, \qquad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{e}_{\mathbf{y}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

.≣⇒

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Can use the idea of over-stacking lagged variables (regressors)

$$\mathbf{S}_{\mathbf{z}}\mathbf{v} = \lambda \mathbf{\Sigma}\mathbf{v}, \qquad \mathbf{\Sigma} = egin{bmatrix} \mathbf{\Sigma}_{\mathbf{e}_{\mathbf{y}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

 $\lim_{N \to \infty} E[\mathbf{S}_{\mathbf{z}}] = \mathbf{S}_{\mathbf{z}^{\star}} + \boldsymbol{\Sigma}$

< ∃→

Can use the idea of over-stacking lagged variables (regressors)

$$\mathbf{S}_{\mathbf{z}}\mathbf{v} = \lambda \mathbf{\Sigma}\mathbf{v}, \qquad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{e}_{\mathbf{y}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

 $\lim_{N \to \infty} E[\mathbf{S}_{\mathbf{z}}] = \mathbf{S}_{\mathbf{z}^{\star}} + \mathbf{\Sigma}$

 $(\mathbf{S}_{\mathbf{z}^\star} + \boldsymbol{\Sigma})\mathbf{v} = \lambda\boldsymbol{\Sigma}\mathbf{v}$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ < Ξ → </p>

Can use the idea of over-stacking lagged variables (regressors)

$$\mathbf{S}_{\mathbf{z}}\mathbf{v} = \lambda \mathbf{\Sigma}\mathbf{v}, \qquad \mathbf{\Sigma} = egin{bmatrix} \mathbf{\Sigma}_{\mathbf{e}_{\mathbf{y}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\lim_{N \to \infty} E[\mathbf{S}_{\mathbf{z}}] = \mathbf{S}_{\mathbf{z}^{\star}} + \mathbf{\Sigma}$$

$$(\mathbf{S}_{\mathbf{z}^{\star}} + \mathbf{\Sigma})\mathbf{v} = \lambda \mathbf{\Sigma} \mathbf{v}$$

$$\mathbf{S}_{\mathbf{z}^{\star}}\mathbf{v} = (\lambda - 1)\boldsymbol{\Sigma}\mathbf{v}$$

 $\exists \rightarrow$

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\frac{1}{N}$

For known noise variance

Can use the idea of **over-stacking lagged variables** (regressors)

$$\begin{split} \mathbf{S}_{\mathbf{z}}\mathbf{v} &= \lambda \boldsymbol{\Sigma} \mathbf{v}, \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{e}_{\mathbf{y}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \\ \lim_{N \to \infty} E[\mathbf{S}_{\mathbf{z}}] &= \mathbf{S}_{\mathbf{z}^{\star}} + \boldsymbol{\Sigma} \\ (\mathbf{S}_{\mathbf{z}^{\star}} + \boldsymbol{\Sigma})\mathbf{v} &= \lambda \boldsymbol{\Sigma} \mathbf{v} \\ \mathbf{S}_{\mathbf{z}^{\star}}\mathbf{v} &= (\lambda - 1)\boldsymbol{\Sigma} \mathbf{v} \end{split}$$

Eigenvalue shift theorem doesn't hold but zero eigenvalues of noise-free data maps to unity generalized eigenvalues.

Order, delay and output noise variance are unknown

$$\begin{split} \mathbf{S_z v} &= \lambda \mathbf{\Sigma v} \\ \text{where,} \quad \mathbf{\Sigma} &= \begin{bmatrix} \mathbf{\Sigma_{e_y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \end{split}$$

★ 문 ▶ 문 문

A D > A B > A B

Order, delay and output noise variance are unknown

$$\mathbf{S_z v} = \lambda \mathbf{\Sigma v}$$

where, $\mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma_{e_y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$

 $\exists \rightarrow$

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Order, delay and output noise variance are unknown

$$\mathbf{S_z v} = \lambda \mathbf{\Sigma v}$$

where, $\mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma_{e_y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \mathbf{\Sigma}'$

 $\exists \rightarrow$

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Order, delay and output noise variance are unknown

$$\begin{split} \mathbf{S_z v} &= \lambda \boldsymbol{\Sigma v} \\ \text{where,} \quad \boldsymbol{\Sigma} &= \begin{bmatrix} \boldsymbol{\Sigma_{e_y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \boldsymbol{\Sigma}' \\ \mathbf{S_{z^\star v}} &= (\lambda - \sigma_{e_y}^2) \boldsymbol{\Sigma}' \mathbf{v} \end{split}$$

1. $\boldsymbol{\Sigma}'$ is a **constant**

2. Instead of unity, look for equal eigenvalues

Order, delay and output noise variance are unknown

$$\mathbf{S_z v} = \lambda \mathbf{\Sigma v}$$
where, $\mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma_{e_y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \mathbf{\Sigma}'$

$$\mathbf{S_{z^*} v} = (\lambda - \sigma_{e_y}^2) \mathbf{\Sigma}' \mathbf{v}$$
1. $\mathbf{\Sigma}'$ is a constant
2. Instead of unity, look for equal

eigenvalues

Order,
$$\hat{\eta} = L - \hat{d} + 1 = 5 - 4 + 1 = 2$$

IIT Madras

Generalized Spectral Decomposition

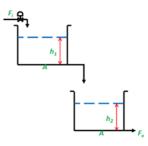
< ≣ >

A D > A B > A B

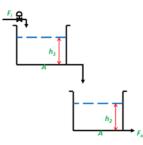
Order, delay and output noise variance are unknown

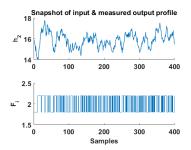
$$\mathbf{S_z v} = \lambda \mathbf{\Sigma v}$$
where, $\mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{e_y} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \sigma_{e_y}^2 \mathbf{\Sigma}'$

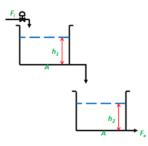
$$\mathbf{S_{z^*} v} = (\lambda - \sigma_{e_y}^2) \mathbf{\Sigma}' \mathbf{v}$$
1. $\mathbf{\Sigma}'$ is a constant
2. Instead of unity, look for equal

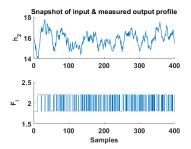


A B > A
 B > A
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

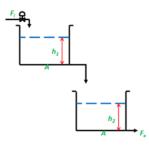


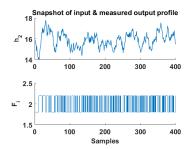






$$\begin{aligned} \frac{dh_1(t)}{dt} &+ \frac{Cv_1}{A_1}\sqrt{h_1(t)} = \frac{1}{A_1}F_i(t) \\ \frac{dh_2(t)}{dt} &+ \frac{Cv_2}{A_1}\sqrt{h_2(t)} = \frac{Cv_1}{A_2}\sqrt{h_1(t)} \end{aligned}$$





$$\begin{aligned} \frac{dh_1(t)}{dt} &+ \frac{Cv_1}{A_1}\sqrt{h_1(t)} = \frac{1}{A_1}F_i(t) \\ \frac{dh_2(t)}{dt} &+ \frac{Cv_2}{A_1}\sqrt{h_2(t)} = \frac{Cv_1}{A_2}\sqrt{h_1(t)} \end{aligned}$$

Cv_1	Cv_2	A_1	A_2	h_{1ss}	h_{2ss}
1.8	0.5	2.4	1.2	1.23	16

Step 1:	Order [Determ	inatio	า	
Last 6 eigenvalues for $L = 4$					
$\Lambda = \Big[2.03$	0.0795	0.0457	0.044	0.0432	
$\hat{\eta} = L - \hat{d} \cdot$	+1 = 2				

Step 1: Order Determination	Step2 : Model Estimation		
Last 6 eigenvalues for $L = 4$	0.4208 = 1 + 0.252 = 2		
$\Lambda = \begin{bmatrix} 2.03 & 0.0795 & 0.0457 & 0.044 & 0.0432 \end{bmatrix}$	$\hat{G}(z^{-1}) = \frac{0.4208z^{-1} + 0.352z^{-2}}{1 - 1.4437z^{-1} + 0.493z^{-2}}$		
$\hat{\eta} = L - \hat{d} + 1 = 2$			

Step 1: Order Determination	Step2 : Model Estimation		
Last 6 eigenvalues for $L = 4$	$0.4208^{-1} + 0.352^{-2}$		
$\Lambda = \begin{bmatrix} 2.03 & 0.0795 & 0.0457 & 0.044 & 0.0432 \end{bmatrix}$	$\hat{G}(z^{-1}) = \frac{0.4208z^{-1} + 0.352z^{-2}}{1 - 1.4437z^{-1} + 0.493z^{-2}}$		
$\hat{\eta} = L - \hat{d} + 1 = 2$			

$$G(s) = \frac{0.2813}{s^2 + 0.3896s + 0.0176}$$

Discretization under ZOH assumption
$$G(z^{-1}) = \frac{0.44z^{-1} + 0.33z^{-2}}{1 - 1.41z^{-1} + 0.46z^{-2}}$$

 A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition

< ⊒ >

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).

< ∃ →

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order

< ∃ →

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Delivers output noise variance

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Delivers output noise variance
 - Estimator is observed to be consistent

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Delivers output noise variance
 - Estimator is observed to be consistent

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Delivers output noise variance
 - Estimator is observed to be consistent

> Proposed algorithm **non-iterative** and consists of **two steps only**.

- A systematic, rigorous method to accurately estimate the dynamic model using generalized spectral decomposition
 - Minimal user intervention (maximum stacking lag to be supplied).
 - Determines the order
 - Delivers output noise variance
 - Estimator is observed to be consistent

- > Proposed algorithm **non-iterative** and consists of **two steps only**.
- Generalized framework which could handle both EIV and classical case with different model structures.

Extension to closed loop systems

< ∃→

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Extension to closed loop systems
- Extension for colored noise structure such as

- Extension to closed loop systems
- Extension for colored noise structure such as
 - Autoregressive with exogenous input (under review in ICASSP 2019)

- Extension to closed loop systems
- Extension for colored noise structure such as
 - Autoregressive with exogenous input (under review in ICASSP 2019)
 - ARMAX, Box-Jenkins model

- Extension to closed loop systems
- Extension for colored noise structure such as
 - Autoregressive with exogenous input (under review in ICASSP 2019)
 - ARMAX, Box-Jenkins model
- Extensions to MISO and MIMO case:

- Extension to closed loop systems
- Extension for colored noise structure such as
 - Autoregressive with exogenous input (under review in ICASSP 2019)
 - ARMAX, Box-Jenkins model
- Extensions to MISO and MIMO case:
 - Break up the given system into individual SISO systems using signal conditioning, i.e., work with *partial* covariance matrices.

Bibliography

- Jollife IT. Principal component analysis. 1986.
- Ljung, Lennart. "System identification." Signal analysis and prediction. Birkhäuser, Boston, MA, 1998. 163-173.
- Narasimhan, Shankar, and Sirish L. Shah. "Model identification and error covariance matrix estimation from noisy data using PCA." Control Engineering Practice 16.1 (2008): 146-155.
- Ku, Wenfu, Robert H. Storer, and Christos Georgakis. "Disturbance detection and isolation by dynamic principal component analysis." Chemometrics and intelligent laboratory systems 30.1 (1995): 179-196.
- Maurya, Deepak, Arun K. Tangirala, and Shankar Narasimhan. "Identification of Errors-in-Variables Models Using Dynamic Iterative Principal Component Analysis." Industrial & Engineering Chemistry Research 57.35 (2018): 11939-11954.

Acknowledgment

Various images in the PPT were borrowed from

- https://en.wikipedia.org/wiki/
- https://emojiterra.com/thinking-face/
- https://knowyourmeme.com/
- https://www.slideshare.net/

-

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

► < Ξ ►</p>

QZ Algorithm

The QZ algorithm is numerical method for solving generalized eigenvalue problem

$$\mathbf{A}\mathbf{v} = \mathbf{\Lambda}\mathbf{B}\mathbf{v} \tag{3}$$

without performing matrix inversion **B**.

1. The idea is to transform (3) to

$$\mathbf{QAZy} = \mathbf{\Lambda QBZy}, \quad \text{under} \quad \mathbf{v} = \mathbf{Zy}$$
 (4)

where ${\bf Q}$ and ${\bf Z}$ are unitary matrices such that ${\bf QAZ}$ and ${\bf QBZ}$ are upper triangular

2. Eigenvalues can be computed from the diagonals of the triangular form. Eigenvectors can be computed by transforming back the eigenvectors of triangular problem with ${\bf Z}$

IIT Madras